On primitive abundant numbers
نویسندگان
چکیده
منابع مشابه
On Totient Abundant Numbers
In this note, we find an asymptotic formula for the counting function of the set of totient abundant numbers.
متن کاملΝοτε Ον Consecutive Abundant Numbers
A positive integer N is called an abundant number if σ(N) > 2N, where σ (N) denotes the suns of the divisors of N including 1 and N. Abundant numbers have been recently investigated by Behrend, Chowla, Davenport , myself, and others ; it has been proved, for example, that they have a density greater than 0 . I prove now the following THEOREM. We can find two constants c l , c 2 such that , for ...
متن کاملVariations on a Theorem of Davenport concerning Abundant Numbers
Let σ(n) = ∑ d|nd be the usual sum-of-divisors function. In 1933, Davenport showed that n/σ(n) possesses a continuous distribution function. In other words, the limit D(u) := limx→∞(1/x) ∑ n≤x,n/σ(n)≤u1 exists for all u ∈ [0, 1] and varies continuously with u. We study the behaviour of the sums ∑n≤x,n/σ(n)≤u f (n) for certain complex-valued multiplicative functions f . Our results cover many of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
سال: 1983
ISSN: 0263-6115
DOI: 10.1017/s1446788700019819